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Abstract 
 
Vision Transformers (ViTs) achieve high accuracy in multiple vision-related 
tasks; however, substantial computational and memory demands limit their 
deployment on resource-constrained edge devices. ViTs process images by 
splitting them into uniform patches, treating each patch as a separate token. Since 
not all regions are equally important—detailed areas may require more tokens, 
while broader regions need fewer optimizing token processing is considered 
essential for improving efficiency. To enhance computational performance, a 
hybrid token reduction approach is implemented, integrating token merging and 
pruning strategies within MMSegmentation, a widely used open-source semantic 
segmentation toolbox. The strengths of CTS, which merges semantically similar 
and adjacent patches using a CNN-based policy network, and DToP, which halts 
the processing of tokens that can be predicted with sufficient accuracy in the early 
layers of the network, are combined in this method. A reduction in computational 
complexity of up to 2× is shown by the experimental results, with only an 
approximate 1% drop in accuracy observed on the NVIDIA Jetson AGX Orin 
64GB. Exporting a pruned PyTorch model to TensorRT remains a challenging 
task that requires considerable effort. The difficulties involved are emphasized, 
and additional work needed to achieve full compatibility with ONNX export 
standards is outlined. 

Keywords Vision transformer, semantic segmentation, token reduction, token 
merging, model optimization, computational efficiency, computational 
complexity, edge device.  

List of Notations and Abbreviations 

ViT: Vision Transformer 

mmseg: MMSegmentation, an open-source semantic segmentation toolbox 

DToP: Dynamic Token Pruning 
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CTS: Content-aware Token Sharing  

mIoU: Mean Intersection Over Union 

FPS: Frames Per Second 

1.1 Introduction and Background 

Vision Transformers (ViTs) have achieved outstanding results in various vision 
tasks, but their substantial computational and memory requirements pose major 
obstacles to deployment on resource-constrained edge devices. A combination of 
software and hardware innovations has emerged to tackle these challenges, 
focusing on reducing computational complexity, memory consumption, and 
improving power efficiency. For example, ViTA [1] introduces a dedicated 
hardware accelerator that optimises ViT inference for real-time applications on 
edge devices, reducing computational overhead and enhancing efficiency. Another 
approach [2] utilises an integer-only systolic array accelerator to minimise power 
consumption and computational demands. Additionally, the ME-ViT accelerator 
[3] offers a memory-efficient FPGA-based solution that optimises data flow and 
storage, lowering memory usage and power consumption. The 109-GOPs/W 
FPGA-based accelerator [4] marks significant progress by incorporating a 
weighted data flow mechanism that minimizes energy consumption. This approach 
prioritizes data reuse, optimizing resource efficiency and reducing power usage. 
On the other hand, researchers have explored various optimization techniques, 
including quantization, distillation, and pruning, to bridge the gap between the 
high performance of ViTs and the constraints of edge environments, making them 
more practical for resource- limited settings. For instance, MobileViT [5] 
introduces a variant of ViTs that merges convolutional neural networks (CNNs) 
with transformers, resulting in a lightweight model that maintains high accuracy 
while being suitable for mobile and edge devices. TinyViT [6] employs 
knowledge distillation to create a smaller, more efficient transformer model that 
retains high performance, making it ideal for edge applications. Similarly, 
EdgeViTs [7] are specifically designed for edge devices, incorporating optimized 
attention mechanisms and downsampling strategies. 

ViTs typically generate visual patches by splitting an image into a uniform, fixed 
grid, where each grid cell is treated as a distinct token. Though straightforward, 
this approach overlooks the varying complexity of image content, as certain 
regions can be represented with fewer tokens due to their homogeneity. For 
example, in an image depicting a busy street, tasks such as identifying vehicles 
and pedestrians may necessitate a higher density of tokens. In contrast, broader 
areas of the image, such as the sidewalk or the sky, may require significantly 
fewer tokens. This disparity in token necessity raises an important question: is it 
truly essential to process such a large number of tokens at every layer of the 
network? Given that the computational complexity of ViT scales quadratically 
with the length of input sequences, a reduction in the number of tokens presents a 
viable strategy for decreasing computational costs. By intelligently selecting and 
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utilising tokens based on their relevance to the task, performance can be optimised 
while simultaneously reducing the resource demands on the model. 

In this context, our work introduces a hybrid token reduction mechanism aimed at 
enhancing the efficiency of ViTs for semantic segmentation tasks. This method 
integrates two cutting-edge techniques: patch merging and early-pruning. A class- 
agnostic CNN-based network, trained independently from the ViT, merges 
semantically similar and adjacent patches, while early-pruning stops the 
processing of tokens that can be confidently predicted in the early layers, reducing 
unnecessary computations. We implement this method with semantic 
segmentation transformer models, specifically ViT-Base and ViT-Tiny, and 
perform experiments on the NVIDIA Jetson AGX Orin 64GB platform. 

1.2 Related Work 

Token reduction techniques are generally tailored to the specific task they address. 
State-of-the-art methods predominantly focus on classification. In this case, token 
pruning methods often permanently eliminate tokens, as they no longer affect the 
outcome. However, in dense prediction tasks like semantic segmentation, patches 
cannot be completely discarded, as each one plays a role in the pixel-level 
predictions needed for detailed results. For such tasks, ViTs handle a large number 
of tokens, where both the size and number of tokens must be carefully selected to 
preserve essential details while minimizing computational complexity. Given the 
demands of dense prediction tasks, not all token reduction methods are suitable, 
with merging techniques generally proving more effective than pruning 
approaches. Unlike pruning, which irreversibly discards tokens and risks losing 
critical information, merging aggregates similar patches, retaining essential 
details. This approach allows the model to maintain accuracy while reducing 
computational complexity by carefully selecting which tokens to combine based 
on their relevance, thereby providing the flexibility needed to adapt to the 
complexities of different image content. Among the token reduction methods 
extended to support dense prediction tasks is DynamicViT [8], [9] that employs a 
dynamic token selection mechanism. Similarly, ToFu [10] has produced notable 
results in image generation tasks, highlighting its potential in areas requiring 
dense, detailed predictions. The authors of TCFormer [11] propose their method as 
a general solution applicable to a wide range of vision tasks, such as object 
detection and semantic segmentation. Nonetheless, TCFormer faces a major 
drawback: the computational complexity of its KNN-DPC algorithm increases 
quadratically with the number of tokens, which undermines its efficiency, 
especially when handling high-resolution images. 

To the best of our knowledge, only three token reduction methods have been 
specifically designed for the segmentation. One such approach is Content-aware 
Token Sharing (CTS) [12], which introduces a class-agnostic policy model using a 
CNN network trained separately from the ViT. CTS identifies whether adjacent 
image patches belong to the same semantic class; if they do, they can share a 
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common token. This is achieved through binary classification to form fixed-size 
groups of patches within the input image, ensuring spatial coherence while 
eliminating the need to process unnecessary tokens. Another approach, Dynamic 
Token Pruning (DToP) [13], enables early-pruning for tokens, allowing simpler 
tokens to complete their predictions earlier in the network. DToP divides the 
transformer into distinct stages and utilizes auxiliary blocks for early prediction 
generation. It also incorporates the attention-to-mask (ATM) module [14] as the 
segmentation head, which improves its efficiency in handling dense, pixel-level 
predictions. Finally, SVIT [15] introduces an innovative method that utilizes a 
lightweight two-layer MLP (Multi-Layer Perceptron) to dynamically select tokens 
for processing within the transformer block. One of its key features is that it 
prunes tokens while retaining them in feature maps, enabling their reactivation in 
later layers. This ensures that important information is preserved, even if some 
tokens are not processed in the early stages of the network. 

1.3 Methodology 

Re-evaluating the traditional fixed-grid approach in ViTs paves the door to more 
efficient architectures that can handle diverse visual tasks with greater precision 
and reduced computational overhead. In the vast majority of images, there exist 
homogeneous regions where it is unnecessary to process redundant patches 
separately. By minimizing the number of input patches, we can reduce the total 
number of tokens handled by the ViT blocks. This approach helps prevent the 
system from expending resources on superfluous tokens, leading to lower energy 
consumption. This drives our investigation into improving the efficiency of ViTs 
through a token merging and pruning strategy tailored for inference on edge 
devices, specifically aimed at enhancing performance in semantic segmentation. 
Our method integrates the strengths of two state-of-the-art techniques: content-
aware patch merging through CTS and early token pruning via DToP. Figure 1.1 
outlines the proposed hybrid token optimization mechanism. Tokenization initiates 
the process, dividing the image into a regular grid of patches. To minimise the 
number of patches that need processing, we utilise a class-agnostic CNN network 
to merge neighboring, semantically similar patches. Next, the token-sharing 
module transforms these non-uniform size patches into tokens 𝑍𝑖 using a linear 
embedding function as follows: 

𝑍𝑖 = 𝑓𝑒𝑚𝑏𝑒𝑑 (𝑃𝑖 ) (1.1) 

where 𝑃𝑖 represents the group of patches obtained from the image, in which each 
patch 𝑝𝑖 ∈ 𝑃 is defined as a sub-region of the image, and 𝑓𝑒𝑚𝑏𝑒𝑑 (. ) the 
embedding function that maps into supertokens 𝑍𝑖. 

As in DToP, the ViT backbone is organised into M stages, with auxiliary heads 
identifying high-confidence tokens that are masked and excluded from further 
calculations. Let C denote the set of high-confidence tokens, where each token is 
determined by a confidence score 𝑐𝑘 ∈ 𝐶: 
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𝑐𝑘 = 𝑓(𝑧𝑗) 𝑖𝑓 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑧𝑗) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (1.2) 

This operation is performed on carefully selected layers, specifically after a certain 
number of transformer blocks. Finally, the model processes the remaining tokens 
to generate the final output through per-token predictions. 

 
Figure 1.1 Outline of the Proposed Hybrid Token Optimization Technique 

1.3.1 Content-aware Patch Merging 

To apply the CTS method to any conventional transformer-based model, it is 
necessary to incorporate a token sharing function 𝑍𝑖, a token unsharing function, 
and a policy model. The class-agnostic policy network determines which patches 
are eligible to share a token prior to their entry into the ViT. It focuses on 
grouping only square neighboring regions, facilitating the seamless reassembly of 
tokens at the output of the ViT backbone. CTS comes with a lightweight CNN 
network to generate probability scores for each 2×2 patch group. It is based on the 
EfficientNetLite0 model [17], pre-trained on ImageNet-1K [18]. This model 
predicts a similarity score 𝑆 for a window of 𝑛 patches 𝜔𝑗 = {𝑝1, 𝑝2, … 𝑝𝑛}: 

𝑆 = 𝜎(𝑊𝑇(𝜔)) (1.3) 

where 𝑊𝑝 is the learned weight matrix of the policy network and 𝜎(. ) is the 
sigmoid activation function. 
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Finally, only the top 103 patch windows 𝜔𝑗 are merged into 2x2 groups, based on 
the highest-ranked probabilities. As a result, the number of patches that are 
converted into tokens is significantly reduced (Figure 1.2). For example, a 
512×512 resolution input image traditionally produces 32×32 patches, with each 
patch covering 16×16 pixels, resulting in 1 024 patches to process. After applying 
the CTS method, only 715 patches are sent to ViT, reducing the number of tokens 
by 30%. 

 
Figure 1.2 Results of Patch merging: grouped patches in blue, individual patches in red 

1.3.2 Early-Pruning 

The core concept of DToP is to identify easy, high-confident tokens in the 
intermediate layers and exclude them from further computations. After a 
predetermined number of attention block layers, the model directs tokens to an 
auxiliary segmentation head, which adapts the ATM, and applies a stopping 
criterion based on the confidence of its predictions. Specifically, at stage M, a 
confidence score 𝑐(𝑚) is calculated for each token 𝑍𝑖, which is formalized as 
follows: 

𝑍(𝑚+1) = {𝑧𝑖 | 𝑐(𝑚) < 𝜃} (1.3) 

where 𝑍(𝑚+1) represents the set of tokens passed to the next stage. Tokens with 
confidence scores exceeding a predefined threshold 𝜃 are classified as high- 
confidence tokens and are discarded, while the low-confidence tokens proceed 
further through the network. This underscores the significance of strategically 
positioning auxiliary heads within the network. Placing them too early could make 
it difficult for the model to accurately predict the class of any tokens. We adopt the 
recommendations from the original DToP paper concerning hyperparameters and 
the positioning of auxiliary heads, acknowledging that they may not be optimal in 
all scenarios. 

1.4 Experiments 

We integrate our hybrid token reduction mechanism into the SegViT semantic 
segmentation framework [14], which serves as the baseline for our performance 
comparison study. All experiments are performed using the MMSegmentation 
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(mmseg) toolbox [19], which allows for easy customization of models by 
combining different backbones. We integrate ViT-Base, which includes 12 
encoder layers, a 768-dimensional hidden layer, and 12 attention heads, alongside 
ViT-Tiny, which features 12 encoder layers, a 192-dimensional hidden layer, and 
3 attention heads. Both process images by dividing them into 16×16 pixel patches. 
We follow the standard training settings in mmseg and use the same 
hyperparameters as the original papers. For DToP, we adopt the configuration 
recommended by the authors, and split the ViT backbone into three stages with 
token pruning occurring at the 6th and 8th layers for ViT-Base. This setup is 
intended to achieve an effective balance between computational cost and 
segmentation accuracy. Additionally, we choose to examine a model divided into 
two stages and position the pruning head after the 8th layer. Since the authors did 
not provide configurations for ViT-Tiny, we applied the same configuration as 
ViT-Base, as ViT-Tiny contains the same number of blocks. Experiments are 
conducted on ADE20k [20], a dataset focused on semantic segmentation. Mean 
Intersection over Union (mIoU) assesses segmentation accuracy, while giga 
floating-point operations (GFLOPs), measured with fvcore package [16], reflect 
model complexity, and frames per second (FPS) indicates throughput. 

For inference on the NVIDIA Jetson AGX Orin 64GB, we primarily use PyTorch 
because of its flexibility and ease of use during model development. To optimize 
performance and fully leverage the hardware capabilities of the NVIDIA Jetson 
platform, TensorRT is the preferred option. However, we encountered several 
challenges when exporting pruned models to ONNX and TensorRT. While 
PyTorch 2.4 supports all necessary layers, it presents compatibility issues with the 
OpenMMLab libraries. Specifically, the mmseg framework, which depends on 
MMCV (a foundational library for computer vision tasks) and MMEngine (a 
runtime engine for managing training, validation, and inference loops), 
complicates cross-compilation with the latest Python and the preferred CUDA 
version. Although we ultimately succeeded in validating the ONNX export, 
TensorRT indicated a size mismatch in one of the backbone layers. It appears that 
a specific layer contains parameters not supported by TensorRT, necessitating 
further investigation to find a solution. 

Table 1.1 and Table 1.2 summarise the performance achieved with the model in 
FP32 format. The results show that integrating our hybrid token reduction method 
into SegViT allows us to maintain a comparable mIoU, with segmentation 
accuracy loss kept within a maximum of 1%. This method achieves a reduction in 
complexity of up to 45% for ViT-Base and 42% for ViT-Tiny. By applying only 
the token merging via CTS, we observe a reduction in computational complexity 
for ViT-Base and ViT-Tiny of 33% and 37%, respectively. The early-pruning 
technique via DToP impacts both computational complexity and inference speed, 
with the number of auxiliary heads playing a crucial role. Although placing the 
pruning heads at the 6th and 8th positions yields a 23% reduction in GFLOPs for 
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ViT-Base. This advantage comes at the expense of increased inference time, 
which can slow the process down by nearly a factor of two. 

Table 1.1 Performance of Token Reduction Method integrated with ViT-Base 
Method mIoU [%] GFLOPs FPS 

SegViT 48.3 112.8 6.8 
+CTS 47.8 75.4 13.3 
+DToP@[6,8] 46.1 86.3 3.9 
+CTS&DToP@[6,8](ours)* 47.2 63.0 12.7 
+CTS&DToP@[6,8](ours) 47.7 62.1 4.5 
+CTS&DToP@[8](ours) 48.3 68.3 6.5 
*on a single A100GPU 

Table 1.2 Performance of Token Reduction Method integrated with ViT-Tiny 
Method mIoU [%] e GFLOPs FPS 

SegViT 37.8 12.0 15.6 
+CTS 37.3 7.6 15.4 
+DToP@[6,8] 38.0 9.9 8.2 
+CTS&DToP@[6,8](ours)* 37.7 6.8 19.0 
+CTS&DToP@[6,8](ours) 37.7 6.8 9.3 
+CTS&DToP@[8](ours) 38.5 6.9 13.1 
*on a single A100GPU 

Figure 1.3 illustrates the inference time for each layer of the model, including the 
auxiliary heads used for pruning. It shows that pruning tokens with segmentation 
heads equipped with ATM modules tends to be excessively slow, underscoring the 
need for future work to focus on optimization. Given this observation, a single 
auxiliary head presents the best trade-off between reducing complexity and time 
inference. 

 
Figure 1.3 Layer-by-layer analysis considering GFLOPs and Throughput (FPS) for 

pruning heads placed at positions 6 and 8. 

Figure 1.4 and Figure 1.5 display visualized predictions, where the number of 
pruned tokens increases from bottom to top. In "easy" samples, most tokens are 
pruned after the 6th ViT block, while in "hard" cases, the majority of tokens are 
retained until the final layer. The second auxiliary head (at the 8th layer) was often 
unable to prune a significant number of tokens, as it was placed too soon after the 
first head. This highlights that using two pruning heads in smaller networks like 
ViT-Base and ViT-Tiny is not always necessary or effective. 
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Figure 1.4 ViT-Base segmentation results with pruned tokens masked in black 

 
Figure 1.5 ViT-Tiny segmentation results with pruned tokens masked in black 
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1.5 Conclusion 

We introduced a hybrid token optimization mechanism specifically designed for 
semantic segmentation, which merges semantically similar neighboring patches 
and incorporates dynamic token pruning based on an early-pruning strategy. 
Implementing our on-the-fly pruning approach significantly influences 
architectural design, requiring careful attention to resource allocation and dynamic 
token management. Nevertheless, proposed token reduction mechanism can 
seamlessly transition to a fixed-token strategy. By simply fixing the number of 
top-k most confident tokens pruned by each auxiliary head, rather than relying on 
the threshold θ, we unlock several advantages. This streamlines hardware design 
by providing predictable resource allocation and optimizing performance. It also 
enhances memory management, improves scalability, minimizes overflow risks, 
and enables parallel processing. Our token reduction technique has been integrated 
into transformer models (ViT-Base and ViT-Tiny) within the mmseg framework. 
Through experiments conducted on established segmentation benchmark with an 
NVIDIA Jetson AGX Orin 64GB, we showed that this optimization method can 
lower computational costs by up to 45% while maintaining accuracy with minimal 
impact. Nevertheless, while using auxiliary heads to prune high-confidence tokens 
lowers computational complexity, it significantly affects inference speed. We 
suggest that future work concentrate on exploring methods to optimize the 
architecture of auxiliary heads. Despite its advantages, the complex mmseg 
framework and the dynamic pruning can complicate model export, as both ONNX 
and TensorRT require a consistent model structure. Future work will tackle these 
challenges, aiming to create a more seamless and efficient export pipeline. Efforts 
will focus on verifying the compatibility of the pruned models with TensorRT and 
ensuring consistent shapes for all inputs to conditional layers. This may involve 
modifying the mmseg framework to include shape-alignment operations or 
developing custom ONNX operations to address shape mismatches. 
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