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Abstract

Vision Transformers (ViTs) achieve state-of-the-art performance in semantic
segmentation but are hindered by high computational and memory costs. To
address this, we propose STEP (SuperToken and Early-Pruning), a hybrid token-
reduction framework that combines dynamic patch merging and token pruning
to enhance efficiency without significantly compromising accuracy. At the core
of STEP is dCTS, a lightweight CNN-based policy network that enables flex-
ible merging into superpatches. Encoder blocks integrate also early-exits to
remove high-confident supertokens, lowering computational load. We evaluate
our method on high-resolution semantic segmentation benchmarks, including
images up to 1024×1024, and show that when dCTS is applied alone, the token
count can be reduced by a factor of 2.5 compared to the standard 16× 16 pixel
patching scheme. This yields a 2.6× reduction in computational cost and a 3.4×
increase in throughput when using ViT-Large as the backbone. Applying the full
STEP framework further improves efficiency, reaching up to a 4× reduction in
computational complexity and a 1.7× gain in inference speed, with a maximum
accuracy drop of no more than 2.0%. With the proposed STEP configurations,
up to 40% of tokens can be confidently predicted and halted before reaching the
final encoder layer.

Keywords: Vision Transformer, Patch, Supertoken, Pruning, Merging, Semantic
Segmentation, Computational Complexity, Optimization
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1 Introduction

Vision Transformers (ViTs) have demonstrated strong performance in semantic
segmentation tasks, primarily thanks to their capacity to capture long-range depen-
dencies. Numerous strategies have been proposed to harness the full potential of
ViTs in this context. One line of work focuses on designing transformer architectures
specifically tailored for semantic segmentation [1, 2]. For example, SETR [2] views
segmentation as a sequence-to-sequence prediction task, while the Pyramid Vision
Transformer (PVT) [1] introduces a hierarchical structure to better capture spatial
information. Another prevalent approach involves enhancing the transformer-based
backbone [3] or modifying the task-specific decoder [4–6]. SegFormer [6] enhances
segmentation performance by integrating pyramid features without relying on posi-
tional encodings. Segmenter [4] introduces learnable class tokens that interact with the
encoder output to generate masks in a data-dependent manner. SegViT [7] pushes the
boundaries of self-attention through its attention-to-mask (ATM) module that directly
predicts segmentation masks from attention maps. More recently, several works have
proposed lightweight or alternative segmentation schemes that leverage the strength
of pre-trained ViT backbones. EoMT [8] introduces an encoder-only mask trans-
former that reuses a frozen ViT backbone and a lightweight mask head, demonstrating
that ViTs inherently encode sufficient spatial information for segmentation without
complex decoders. CCASeg [9] proposes a convolutional cross-attention decoder that
efficiently aggregates multi-scale context with reduced computational overhead. U-
MixFormer [10] presents a U-Net–like transformer architecture with mix-attention
blocks, achieving competitive performance through efficient feature fusion. S4Former
[11] designs a semi-supervised ViT framework with patch-adaptive self-attention,
achieving strong results with only partial label supervision.

Despite their strong performance, ViTs still pose significant computational chal-
lenges. A primary concern is the quadratic complexity of the self-attention mechanism,
which scales poorly with image resolution. As input image size increases, both com-
putational cost and memory consumption grow substantially, hindering the practical
deployment of ViTs. Although various efforts have been made to improve their
efficiency, achieving a balance between computational complexity, latency, and perfor-
mance remains difficult, including quantization [12–16] knowledge distillation [17, 18]
and pruning. Key studies have demonstrated that these model compression approaches
can significantly reduce both model size and computational cost, thereby enhancing the
practicality of ViTs in large-scale applications. In this context, we propose SuperToken
and Early-Pruning (STEP), a novel token reduction mechanism designed to enhance
the efficiency of ViT for semantic segmentation. In contrast to conventional grid-based
patch processing, this approach produces superpatches of varying sizes thanks to the
proposed dCTS module, allowing the number of tokens to adapt to the complexity of
the image content. Furthermore, STEP integrates an early-pruning strategy, in which
certain tokens are masked and halted early in the network pipeline, thereby reducing
the computational load in subsequent layers. This paper is an extended version of our
conference paper [19]. We make several new contributions:
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• We conduct extensive experiments on an NVIDIA A100 GPU to evaluate the
STEP mechanism integrated into state-of-the-art Transformer backbones (ViT-
Large and ViT-Base), using SegViT as the decoder and widely recognized semantic
segmentation benchmarks.

• We also demonstrate the potential of our framework on high-resolution images (up to
1024×1024) to assess its scalability for semantic segmentation. The model maintains
competitive accuracy while significantly reducing computational complexity and
inference time. Notably, to the best of our knowledge, this is the first attempt
to evaluate a token pruning strategy in the context of high-resolution semantic
segmentation.

• We provide more in-depth analyses, ablation studies, and visualizations.

2 Vision Transformer Pruning: Prior Work

Vision Transformers traditionally partition an image into a uniform grid, treating
each patch as an individual token. However, this fixed strategy overlooks the varying
importance of different image regions depending on the task. For instance, recogniz-
ing fine details may require a high token density, whereas homogeneous areas can be
represented with fewer tokens. This raises a key question: is it necessary to process
the same number of tokens for each input image? Given the substantial computational
cost of ViTs, reducing the number of tokens emerges as a natural and effective way
to improve efficiency. When examining existing approaches, pruning techniques can
be broadly categorized based on the level at which they operate. Some methods act
at the patch-level to reduce redundancy before the input reaches the ViT backbone.
Others focus on token-token pruning, eliminating tokens based on similarity or learned
importance throughout the transformer layers. Effectively addressing these challenges
requires advanced strategies that consider task-specific requirements, reliable token
importance metrics, and retraining schemes to compensate for information loss. Impor-
tantly, excessive pruning may lead to the removal of critical content, degrading overall
model performance. Striking a balance between computational efficiency and accuracy
preservation remains a central challenge in token pruning for ViT.

2.1 Patch-level pruning

Patch-level pruning includes the aggregation of neighboring patches into larger, seman-
tically consistent units. Some existing methods rely on learned mechanisms that
dynamically predict which patches should be merged, typically using lightweight neu-
ral modules. For example, CTS [20] retains the naively sliced square image patches
and merges locally the most similar ones. For this purpose, it employs a class-agnostic
policy network to predict whether a group of 2×2 neighboring patches belongs to the
same class. If so, the patches are merged and represented by a shared token, thereby
reducing the overall token count. An alternative idea is to use adaptive resolution
or mixed-scale tokenization [21–23]. These approaches dynamically select token sizes
or resolutions based on the input image content, while still relying on square-shaped
patches. In MSViT [21] a lightweight, four-layer MLP serves as a gating mechanism,
making binary decisions on whether a region should be tokenized coarsely (with 32×32
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pixel patches) or finely (with 16×16 pixel patches). CF-ViT [22] proposes a coarse-to-
fine inference strategy. The model first performs inference on coarse-grained patches.
If the confidence is low, only the informative regions identified via global class atten-
tion are re-processed at finer granularity. The Quadtree algorithm, integrated into the
Quadformer model [23], is combined with a saliency scorer to adaptively partition the
image into patches of varying sizes. Regions with higher saliency are represented at
higher resolution, while less salient areas are processed at lower resolution. A different
strategy for reducing the number of patches is patch pruning, which aims to retain
only the most informative patches for the target task. This selective retention can be
guided by learned importance measures, enabling the model to focus its computational
resources on semantically relevant regions while discarding redundant or background
information, as demonstrated by PaPr [24].

2.2 Token-level pruning

Token-level pruning typically operates at intermediate layers by removing or merging
tokens based on their estimated importance. This usually takes place after one or
more Transformer blocks, once sufficient contextual information has been aggregated
to make an informed decision about which tokens are less informative or redundant for
the downstream task. In contrast to patch-level, token pruning leverages the evolving
semantic representations of tokens as they propagate through the network. A key
component is the scoring mechanism used to evaluate the importance of each token.
These techniques can broadly be categorized into learned and heuristic approaches.
Learned token pruning methods [25–31] incorporate trainable modules into the ViT
architecture to assess token informativeness. In contrast, heuristic token pruning can
be applied to the off-the-shelf ViTs, without further finetuning [32–35]. Regardless of
the technique used, the derived score determines which tokens are retained and which
can be safely discarded or merged.

2.2.1 Token discarding

Token discarding refers to selectively removing tokens based on predefined importance
scores or confidence measures.These methods can typically be divided into hard and
soft pruning. In hard pruning [25, 26, 30, 31, 36–38] less important tokens are com-
pletely removed based on a predefined importance score. In contrast, soft pruning
does not eliminate tokens entirely. Instead, it either aggregates less informative tokens
into consolidated representations package token [28, 29, 39], or halts their further
processing once they reach a sufficient confidence level [34, 40–43].

DToP [34] and DoViT [41] both adopt the use of dynamic early-exit mechanisms
that adaptively prune tokens based on confidence scores computed at intermediate
layers, with DoViT adding a reconstruction module for spatial consistency. A-ViT [43]
proposes to halt tokens using a cumulative sigmoid-based score derived from token
embeddings. Among the methods that focus on generating and consolidating represen-
tative tokens, SP-ViT [28] stands out by introducing an attention-based multi-head
token selector. This module is inserted at multiple points in the network to rank tokens
by importance, consolidate similar ones, and prune the least informative. Similarly,
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EViT [29] focuses on the progressive selection of informative tokens during training.
It masks and fuses regions that represent the inattentive tokens to expedite computa-
tions. The attentiveness value is chosen as a criterion to identify the top-k attentive
tokens and fuse the rest. Evo-ViT [39] goes further by updating and reintegrating
the fused token into the network through a slow-fast evolution mechanism, preserving
information more effectively.

Whereas the aforementioned soft pruning maintains spatial structure by preserving
compressed token information, hard pruning methods adopt a more aggressive stance
by completely removing tokens. ATS [26] prunes tokens by scoring their importance
using attention from the classification token and sampling them via inverse transform
sampling. It adaptively selects a variable number of tokens per image, is parameter-
free, and works with pre-trained models without retraining. CP-ViT [31] dynamically
prunes uninformative patches and heads using cumulative attention-based scores com-
puted across layers. AdaViT [30] introduces a lightweight decision network integrated
into each Transformer block, jointly optimized with the backbone. At inference time,
it outputs binary decisions to selectively retain tokens, activate self-attention heads, or
skip entire blocks, enabling dynamic and input-dependent computation. DynamicViT
[25] also incorporates lightweight prediction modules at multiple layers to progressively
estimate token importance and discard less informative ones. Zero-TPrune [38] applies
a two-stage, zero-shot pruning process. It first ranks token importance using attention-
based PageRank, then removes redundancy by merging similar tokens. Unlike AdaViT
or DynamicViT, it requires no training or architectural modification, aligning more
closely with ATS in its plug-and-play nature.

2.3 Token merging

Merging reduces the number of tokens by combining them into more informative,
aggregated representations, while preserving key information. This can be done based
on criteria like spatial proximity, semantic similarity, or predictive contribution. A
common approach involves a hybrid of spatial and feature aggregation: spatial aggre-
gation merges tokens from adjacent regions, while feature aggregation combines tokens
with similar semantic representations. DPC-KNN [44] identifies clusters by estimating
local token densities and merging those with minimal distance to high density points.
TCFormer [45] merges tokens from different locations through progressive clustering,
generating new tokens with flexible shapes and sizes. AiluRus[46] reduces token count
in ViTs via spatial-aware merging based on Density Peaks Clustering (DPC). Tokens
are merged by selecting cluster centers using a score combining feature-space den-
sity and spatial distance. Non-center tokens are assigned to their nearest center. A
reweighting mechanism adjusts attention to account for merged token groups. Token
Pooling [47] employs hard clustering by minimizing intra-cluster distances, using atten-
tion from the CLS token to initialize cluster centers. Following each transformer block,
it identifies a subset of tokens that best approximates the underlying continuous sig-
nal, thereby capturing redundant features. ToMe [33] computes token similarity using
cosine similarity between attention keys, then merges the most similar token pairs
using a bipartite matching algorithm. The merging is done via a weighted average
of their features. ALGM [48] performs token merging in a two-stage process. It first
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merges locally similar tokens in early layers, then globally merges semantically simi-
lar tokens mid-network, using cosine similarity and a ToMe-inspired strategy. LoTM
[49] introduces a local constraint by merging only pairs of horizontally adjacent tokens
based on cosine similarity. DHTM [50] extends the previous approach by consider-
ing all tokens as potential references and selectively merges only the most similar
neighboring tokens in each Transformer layer. Unlike prior methods that rely on inter-
mediate ViT features or fixed merging heuristics, DTEM [51] learns a dedicated token
embedding solely for merging. This decoupled embedding enables a soft, differentiable
merging process during training and efficient hard merging at inference improving
both flexibility and performance across tasks.

2.3.1 Hybrid token reduction

Determining whether to discard or merge tokens involves nuanced trade-offs, raising
the issue of which strategy yields better performance for a particular task. Recent
developments have introduced hybrid approaches that unify token merging and dis-
carding within a single framework to further improve the efficiency of ViT. However,
integrating both techniques introduces additional design considerations, particularly
in determining when and how to apply each mechanism throughout the network.
In this context, LTMP [52]introduces, into every Transformer block, threshold-based
masking between MSA and FFN blocks to decide whether to keep, merge, or drop
individual tokens. In ToFu [53], the BSM algorithm plays a central role. Given a group
of similar tokens, three token reduction strategies are proposed: tokens can either be
fused using average merging, merged with MLERP (Norm-Preserving Average), or
discarded. Token pruning strategy varies with layer depth: early layers apply discard-
ing, while later layers favor merging. Both LTMP and ToFu adapt token merging
from ToMe. PPT [54] is based on the per-layer, per-instance variance of token impor-
tance scores. High variance favors pruning, while low variance favors merging. The
authors observe that the variance of token importance scores increases with model
depth, making token importance more distinguishable in deeper layers. Consequently,
token pruning is more effective in deeper layers, while token merging is preferable in
shallower layers; a finding that contrasts with the observations from ToFu. DiffRate
[55] treats token reduction as a learnable optimization problem, allowing each layer to
adjust its compression rate dynamically. Rather than handcrafting which layers should
prune or merge tokens, DiffRate treats the compression rates as learnable parameters
per layer. These are optimized during training through gradient descent, thanks to a
module called the Differentiable Discrete Proxy (DDP). In practice, both token prun-
ing and merging are applied in every transformer layer, but the proportion of each
is learned in a differentiable manner. The pruning mechanism in UCC [56] is based
on a hybrid importance score that combines both spatial and spectral information.
At each Transformer block, tokens with low importance scores are pruned. However,
instead of discarding them, UCC merges pruned tokens into the retained ones using a
combination of cosine similarity and frequency-aware weighting, thereby maintaining
the contextual integrity of the input. PM-ViT [57] proposes layer-wise compression
strategy. This approach uses a learnable merge matrix to fuse less important tokens
into aggregated representations and a reconstruct matrix to restore token dimensions
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after the transformer block. Token importance is estimated during training through
a gradient-weighted attention scoring mechanism, which avoids extra computation
at inference time. Tokens are categorized into three groups: high-importance tokens
are preserved, medium-importance tokens are merged, and low-importance tokens are
pruned. Shortcut connections are used to reintroduce pruned tokens, ensuring minimal
information loss.

2.4 Token Reduction for Dense Tasks

Most existing token reduction techniques have been primarily evaluated on image
classification or generative tasks such as diffusion, with their applicability to dense
prediction tasks remaining relatively underexplored. Token discarding methods, in par-
ticular, often involve the permanent removal of tokens that are deemed uninformative
for the final prediction. This is feasible in classification settings due to the architec-
tural design of ViTs, where the output is derived solely from the class token, which
is always retained. However, in dense prediction tasks such as semantic segmentation,
this strategy is not viable, as accurate pixel-wise predictions require preserving infor-
mation from all spatial tokens. Consequently, more nuanced token reduction strategies
like token merging or soft pruning are necessary to maintain spatial fidelity while
reducing computational overhead. Consequently, only a few of the aforementioned
token reduction methods are suitable for dense prediction tasks. Several approaches
specifically developed for segmentation leverage merging-based mechanisms, whether
at the patch [20, 21] or token-level [48]. ALGM extends ToMe’s global merging with
segmentation-aware local merging and adaptive control, making it effective for dense
prediction tasks. STViT [58] and Ailurus [46] have been validated across various dense
prediction tasks, including object detection, instance segmentation, and semantic seg-
mentation. TCFormer [45, 59] is presented as a general-purpose method applicable to
various vision tasks, including object detection and semantic segmentation. However,
its main limitation lies in the quadratic computational complexity of the KNN-DPC
algorithm with respect to the number of tokens, which hampers its efficiency at high
input resolutions. Among token-level pruning strategies, soft pruning is generally pre-
ferred, as it allows for more flexible token selection and gradual reduction without hard
elimination. In particular, approaches that incorporate early stopping mechanisms
appear especially well suited. In this direction, methods such as DToP [34], Paumer
[40], and DoViT [41] have been specifically designed for semantic segmentation. SViT
[42] validates its approach on object detection and instance segmentation benchmarks.
In contrast, DynamicViT [25] adopts hard token pruning, and its extended version [60]
also proves the method’s effectiveness for object detection and instance segmentation.
Hybrid token reduction methods, such as ToFu [53], have shown promising results on
image generation tasks. PM-ViT [57], on the other hand, demonstrates its approach
on image classification and semantic segmentation.
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3 Methodology

In this work, we introduce a novel token reduction strategy designed to improve the
efficiency of ViTs. Our approach, named STEP (SuperToken and Early-Pruning), inte-
grates two complementary techniques: supertoken generation and early token pruning.
A supertoken is a compact representation derived from aggregating multiple spa-
tially adjacent and semantically similar image patches into a single superpatch. The
STEP mechanism, integrated into the vanilla ViT architecture, effectively reduces
sequence length while preserving the essential spatial and semantic structure of the
image, resulting in a more efficient yet accurate segmentation pipeline. This is achieved
through dynamic adjustment of patch merging rates and token halting.

3.1 Motivation

Token-level pruning strategies applied deeper in the network often rely on intermediate
attention scores or learned token importance, requiring additional computation and
training complexity. These methods also typically maintain the full input sequence
during early layers. From our point of view, reducing token count at the patch-level
provides several practical and architectural benefits compared to token-level pruning.
Since patches constitute the input units for the ViT, eliminating redundant ones at
this stage directly shortens the input sequence. This leads to immediate reductions
in computational cost and memory usage across all subsequent layers. The impact is
particularly significant in the case of high-resolution semantic segmentation, where
the initial number of tokens can be extremely high. Moreover, patch-level reduction is
inherently more interpretable and compatible with pre-trained models.

Fig. 1: Example of failures of CTS due to the top-K merging strategy. Left: Too few
merges on simple images; Right: Too many merges on complex images.

However, existing approaches have certain limitations. CTS [20], for example, fixes
the number (K=103) and size (2×2) of superpatches as hyperparameters. This can be
problematic for complex images, as it may lead to the merging of patches that should
remain separate. Conversely, for images with homogeneous content, the merging rate
can often be suboptimal (see Figure 1). MSViT [21] addresses one of the limitations of
CTS by dynamically adapting the number of merged patches. Nevertheless, the high-
est resolution patch remains limited to 2×2. Quadformer employs three grouping sizes
namely 8×8, 4×4, and 2×2 patches in its mixed-resolution tokenization scheme. A key
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limitation of this approach is the increased inference-time overhead observed in small
models, especially ViT-Small. Although the saliency scorer is lightweight in terms of
parameters, its execution is relatively slow compared to the fast inference of com-
pact models. This motivates our focus on content-adaptive patch-level pruning, which
dynamically adjusts supertoken resolution and number based on local semantic homo-
geneity. We retain a regular grid structure after patch merging to simplify positional
embedding interpolation and maintain compatibility with standard ViT architectures.

Moreover, we believe, as demonstrated by soft pruning approaches, that tokens vary
in difficulty, and that simpler tokens may be predicted earlier, eliminating the need
for a complete forward pass through the entire network. Once a sufficient confidence
level is reached, their further processing can be halted. In segmentation tasks, this
idea becomes even more appealing, since tokens cannot be entirely removed due to the
requirement for per-token predictions. We therefore consider this method to be com-
plementary to input sequence length reduction, as it enables a progressive shortening
of the set of tokens processed as the network deepens. Such a hybrid approach not only
reduces computation but also allows ViTs to better allocate attention and process-
ing power to semantically rich regions, making them more suitable for high-resolution
semantic segmentation.

3.2 Overview of the STEP

STEP is a hybrid token-reduction approach that operates on two levels: it first merges
patches at the local level, then performs additional token pruning at selected stages
of the network (Figure 2). The process begins by dividing the image into a uniform
grid of superpatches, following the standard procedure used in vanilla Transformers
(in our case, 16×16 pixel patches). Next, a module called dCTS performs token merg-
ing based on similarity, resulting in a grid of superpatches with non-uniform sizes. The
token-sharing module transforms the created superpatches into supertokens. Super-
patches are resized to the standard 16×16 pixel resolution using bilinear interpolation
and projected into the embedding space in the same way as regular patches. The
latter is performed by applying a linear embedding function fembed, which maps the
superpatches into their corresponding token representations:

Z = fembed(P
′) (1)

where P ′ represents the set of superpatches, and fembed is the linear embedding
function that generates the supertokens Z. The transformer-based ViT models process
the resulting supertokens and produce the final output through per-token predictions.
An early exit strategy is also implemented through an auxiliary decoding head within
encoder blocks, which are divided into S stages. This allows tokens that are confidently
predicted by the model in the early layers to be halted, thereby reducing overall
computational costs without compromising segmentation accuracy. Only the most
challenging tokens continue to propagate through the deeper layers of the transformer.
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Fig. 2: STEP overview. The image is first divided into fixed-size grid patches. The
dCTS policy network then predicts which groups of patches can be merged into super-
patches of varying resolutions, which are subsequently transformed into supertokens.
Following the DToP approach, the ViT encoder blocks are organized into S stages.
This multi-stage structure, equipped with auxiliary decoders, dynamically masks high-
confidence tokens (represented as black squares), while the remaining tokens are
propagated through the subsequent layers. The final decoder head combines predic-
tions from all stages to generate the final output. Figure inspired from [19].

3.2.1 Semantic-aware patch aggregation

We propose a flexible and content-adaptive strategy, referred to as dynamic CTS
(dCTS), inspired by CTS but designed to more effectively address the inherent
complexity and variability of image contents. This merging step is guided by a
lightweight class-agnostic policy network built upon the EfficientNetLite0 architecture
[61], pre-trained on ImageNet-1K [62]. For each image, groups of adjacent patches
are considered and a similarity score is computed to assess whether the group likely
belongs to a single semantic class. Given any window of n neighboring patches
W = {p1,p2, . . . ,pn}, the policy network predicts a similarity score S as follows:

S = σ
(
W⊤

p (W)
)

(2)

where Wp is the learned weight matrix of the policy network and σ denotes the
sigmoid activation function. Fusion is performed using a threshold-based approach: if
the similarity score exceeds a predefined threshold τ , the patches are merged into a
superpatch:

psp = concat(p1,p2, . . . ,pn) (3)
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In practice, the policy network processes the input image after it has been divided
into uniform patches. For each group, it produces a similarity score S, a continu-
ous value in the range [0, 1], which is interpreted as the probability that the group
is homogeneous. Rather than predicting the exact class, the network leverages this
probability and applies a predefined threshold τ to categorize each group into one of
two classes: (i) likely belonging to a single semantic class or (ii) likely heterogeneous.
This probabilistic interpretation supports a flexible, threshold-based decision mecha-
nism for patch merging. Fusion proceeds in a coarse-to-fine manner, starting with the
largest window sizes (16 × 16 patches) and progressively evaluating smaller windows
(8 × 8, 4 × 4, and 2 × 2). This hierarchical order ensures that there are no conflicts
between nested groups , i.e., it prevents the merging of a smaller 2 × 2 patch group
that is already part of a larger region deemed mergeable. Figure 3 presents illustra-
tive results of the merging process using our dCTS method. These examples showcase
the ability of dCTS to adaptively merge patches in homogeneous regions (e.g., back-
ground or sky) while maintaining higher spatial resolution in semantically complex
areas such as object boundaries or textured regions.

Fig. 3: Resolution-aware splitting on superpatches using dCTS (from 2×2 to 16×16).

3.2.2 Early-pruning mechanism

We incorporate a state-of-the-art early exiting mechanism inspired by DToP into our
pipeline. The core principle behind DToP is to identify easy-to-predict tokens at inter-
mediate layers and exclude them from further processing. To achieve this, the model
is structured into M sequential stages. After a fixed number of attention blocks, an

auxiliary head computes a confidence score c
(m)
i for each token zi. Tokens whose confi-

dence exceeds a predefined threshold τ are considered high confidence and are masked
out, that is, removed from subsequent computation. Low-confidence tokens Z(m+1)
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continue to propagate through the subsequent encoder layers :

Z(m+1) =
{
zi

∣∣∣ c(m)
i < τ

}
(4)

Similar to DToP, our implementation employs auxiliary heads that adopt the
attention-to-mask (ATM) module [7]. These heads are architecturally identical to the
final decoder head, ensuring consistent behavior across all stages. The effectiveness of
such an early-pruning mechanism heavily depends on the proper placement of the aux-
iliary heads. If placed too early in the network, the model may fail to generate reliable
predictions, as the representations are not yet sufficiently informative. Conversely, if
the auxiliary heads are positioned too late in the network, most of the computational
cost has already been incurred by the time pruning occurs. As a result, the potential
savings in inference time and FLOPs are significantly reduced, defeating the main pur-
pose of early exiting. The authors of DToP introduce auxiliary heads at specific layers,
namely the 6th and 8th for ViT-Base, and the 8th and 16th for ViT-Large. Although
this configuration yields a reasonable trade-off between computational cost and seg-
mentation accuracy, it remains largely empirical and lacks a principled justification.
The exploration of pruning positions is limited to a small set of static configurations,
and the impact of pruning positions on inference time is not explicitly discussed.
We argue that further investigations are needed to establish more generalizable and
adaptive guidelines for auxiliary head placement. This includes studying the inter-
nal evolution of token difficulty, exploring data- or budget-adaptive strategies, and
considering the impact of auxiliary head placement on real-time inference efficiency.

4 Experiments

This section presents a detailed evaluation of our STEP mechanism on widely used
benchmarks, focusing on both predictive accuracy and computational efficiency. The
evaluation begins with a description of the main architectural and hyperparameter
choices involved in the design of our STEP method. In particular, we analyze the
impact of threshold parameters that control the semantic-aware patch merging via
dCTS (Section 4.2). We also investigate the placement and configuration of early-exit
branches, with a focus on their number and depth within the transformer architecture
(Section 4.3). To comprehensively assess STEP performance and isolate the effect of
each component, mean Intersection over Union (mIoU) is used to evaluate segmenta-
tion accuracy, while GFLOPs (giga floating-point operations) provide an estimate of
the model’s computational complexity. GFLOPs are computed using the fvcore pack-
age1, ensuring consistent measurement across all configurations. These metrics are
reported for both standard-resolution and high-resolution settings (Section 4.4).

4.1 Experimental Setup

We integrate STEP [7] into the SegViT semantic segmentation framework. All exper-
iments are conducted using MMSegmentation2[63], an open-source PyTorch-based

1https://github.com/facebookresearch/fvcore
2https://github.com/open-mmlab/mmsegmentation
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library that facilitates flexible backbone integration. We evaluate our approach using
both ViT-Base and ViT-Large models. ViT-Base includes 12 transformer encoder lay-
ers, a hidden size of 768, and 12 attention heads, while ViT-Large consists of 24 layers,
a 1024-dimensional hidden state, and 16 attention heads. In both cases, input images
are first divided into a non-overlapping 16× 16 pixel grid of patches. Experiments are
conducted on three widely used semantic segmentation benchmarks: COCOStuff10k
[64], which includes a wide variety of objects in complex, real-world scenes, ADE20K
[65], a comprehensive dataset for scene parsing, and Cityscapes [66], which focuses
on urban street scenes with high-quality pixel-level annotations. The standard eval-
uation is conducted using fixed input resolutions, namely 512 × 512 in accordance
with commonly adopted benchmarking protocols. To evaluate scalability under high-
resolution conditions, additional experiments are conducted on the Cityscapes dataset,
which offers images with a consistent resolution of 2048× 1024. The DToP confidence
threshold is set to 0.95 for COCOStuff10k, and 0.9 for ADE20K and Cityscapes. Opti-
mization is performed using AdamW with an initial learning rate of 6e-5, a weight
decay of 0.01, and a cosine learning rate schedule. Training follows the standard mmseg
configuration. Models are trained for 160K iterations on ADE20K, 80K iterations on
COCOStuff10k, and 90K for Cityscapes with a batch size of 4. Data augmentation
includes random horizontal flipping, resizing with a scale ratio between 0.5 and 2.0,
and random cropping. We acknowledge that the chosen parameters may not be opti-
mal for achieving the highest possible performance (e.g., mIoU). However, our primary
objective is not to maximize accuracy, but rather to demonstrate the efficiency gains
enabled by our token reduction approach.

4.2 dCTS Under Varying Thresholds

We conduct a series of experiments to determine the optimal merging threshold τ
for various superpatch sizes in our dCTS approach. In this process, we assess model
performance in terms of mIoU and GFLOPs, using ViT-Large as the backbone and
two different datasets, with standard image resolutions typically used for segmentation
tasks. This enables us to identify the best trade-off between computational efficiency
and segmentation accuracy for each superpatch size. For example, when merging only
2×2 patch groups, we find that setting the threshold to τ = 0.4 achieves the best trade-
off between accuracy and computational cost. This configuration leads to a modest
accuracy drop of approximately 1%, while reducing computational complexity by at
least 30%. This trend is consistently observed across both datasets (see Figure 4).

In our dCTS approach, we apply the same principle by assigning a distinct thresh-
old value τ to each patch group size. Specifically, we set a high threshold of 0.9 for
larger patch groups, while lower values are used for smaller ones, starting from τ = 0.4
for the smallest 2× 2 groups. This strategy is motivated by the need to prevent errors
when forming large superpatches, as incorrect merges at this scale can significantly
degrade the quality of the final segmentation. Table 1 summarizes the results obtained
for several threshold τ configurations. From this, we determine the optimal combina-
tion to be τ -4999 or τ -6899 for the 2× 2, 4× 4, 8× 8, and 16× 16 superpatch sizes,
respectively. Compared to the CTS, the first configuration allows no loss in segmen-
tation accuracy while reducing computational complexity by 27%. The second is less
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Fig. 4: Tuning the merging threshold τ hyperparameter influences both segmentation
accuracy and computational cost when employing the ViT-Large backbone. The blue
curve illustrates the effect of varying τ when merging only 2 × 2 patch groups. The
orange star indicates the performance of CTS with a fixed number of merged patches.

strict on segmentation quality, allowing a potential 1% loss in mIoU, but reducing
complexity by 36%.

Table 1: Performance of the dCTS method on the COCOStuff10k dataset using size-
dependent merging thresholds τ for different superpatch sizes 2 × 2, 4 × 4, 8 × 8, and
16× 16.

Threshold τ

Metric CTS .6.9.9.9 .6.8.9.9 .4.9.9.9 .4.8.9.9 .4.7.9.9 .4.6.9.9 .4.5.9.9 .4.4.9.9

mIoU 46.1 45.9 46.0 45.3 44.8 43.9 44.1 43.7 43.7

GFLOPs 248 189 181 159 156 153 151 149 147

As shown in Table 2, on high-resolution images, an average of 2988 patches (out of
4096) are merged using dCTS, representing an increase compared to the 412 patches
merged with CTS. It can be also observed that the merging of larger neighboring
patch groups such as 8 × 8 and 16 × 16 remains relatively rare. This is consistent
with the nature of Cityscapes, which mostly contains visually complex scenes with
multiple objects and diverse textures, where large homogeneous regions are relatively
uncommon. Nonetheless, dCTS achieves on average a 2.5× reduction in the number
of patches on high-resolution images. This trend is also confirmed by experiments on
other standard-resolution datasets [19], where the merging approach enables up to a
6× token reduction for highly homogeneous content, and up to 3× for more complex
scenes, compared to standard fixed-grid slicing.
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Table 2: Statistical insights into token pruning via STEP on the Cityscapes dataset
for different input resolutions.

Input 512× 512 Input 1024× 1024

Metric Superpatch resolution Superpatch resolution

1× 1 2× 2 4× 4 8× 8 16× 16 1× 1 2× 2 4× 4 8× 8 16× 16

Mean 640 52 9 0.3 0 1108 452 50 10 0.8
Maximum 816 84 20 3 0 2212 656 32 21 5
Minimum 424 24 0 0 0 632 246 2 0 0

4.3 Prune Smart: Where Should Tokens Exit?

To determine the optimal placement of the auxiliary head, we conduct an ablation
study of the early-exit mechanism based on DToP, using standard-resolution images
commonly employed in semantic segmentation benchmarks. We choose to partition
the large ViT backbone (24 encoder layers) into a maximum of three stages. For
each configuration, we evaluate its impact on segmentation accuracy, computational
complexity (Figure 5), inference time (Figure 6a), and the percentage of pruned tokens
(Figure 6b), in order to identify the most effective positioning strategy. The results
clearly demonstrate that the number and placement of auxiliary heads directly impact
computational complexity and inference speed. For instance, placing two auxiliary
heads at the 8th and 16th layers achieves a 22% reduction in GFLOPs (289 vs. 373),
while maintaining segmentation accuracy comparable to the baseline SegViT model,
which performs no token pruning. However, this gain in efficiency comes at the expense
of throughput, with inference time increasing threefold compared to the unpruned
baseline. In contrast, using a single auxiliary head placed deeper in the network (e.g.,
at the 16th or 18th layer) offers a more favorable trade-off. Although it slows inference,
it still provides a significant reduction in computational cost. Figure 6b further shows
that with a single pruning head the percentage of pruned tokens increases linearly,
reaching around 40% on average. Remarkably, this level of pruning is comparable
to what is achieved with two early-exit heads, regardless of their configuration. This
suggests that a well-placed single auxiliary head can be nearly as effective as a more
complex multi-head setup.

Identifying the optimal pruning configuration is a non-trivial and nuanced process.
If the primary goal is to reduce computational complexity, our results indicate that
splitting the large model (i.e., ViT-Large) into two stages and inserting auxiliary
heads after the 8th and 16th layers yields the most effective token pruning. However,
if inference speed is the main concern, a more suitable approach is to use only a
single auxiliary head, positioned as early as the 16th layer, which balances token
reduction with acceptable latency overhead. To adapt this strategy to smaller 12-layer
architectures like ViT-Base, we interpolate our results and identify the 8th layer as
the optimal position for deploying a single auxiliary head.

15



2,22

280

GFLOPs

m
Io

U

300 320 340 360

45,5

45

46,5

46

47,5

47

48

SegViT

GFLOPs=330
mIoU=46,5
Area of Interest

3,21

1,5

2,18

18,19

18,18

2,17

4,18

12,18
16,16

9,9

2,15

2,16

4,17
2,14

7,9

4,16

8,12

10,14
8,17

8,14

10,15

7,14

8,15
10,17

9,19

12,15
13,18

10,12

4,14
4,15

6,176,14
8,18
10,16

10,18

8,16
6,16 12,17

6,15

15,22

6,18

13,13
7,712,14

12,16
5,14

Fig. 5: Pruning head configuration analysis on the COCOStuff10k dataset. The num-
bered markers indicate the positions of the auxiliary heads, while the star corresponds
to the performance of the baseline SegViT model without pruning. The plot illustrates
the trade-off between segmentation accuracy (mIoU) and computational complexity
(GFLOPs). Configurations within the yellow rectangle are selected for further analy-
sis, as they yield at least a 10% reduction. Figure from [19].

285

GFLOPs

FP
S

295 305 315 320

12

290 300 310 325 330

14

16

18

20

22

24

26

28

30
18,18

16,16

13,13
15,22

2,16
2,15

4,18

7,7

2,17

9,9

6,186,17

12,18

10,18

5,148,16

6,146,167,14

8,18 6,15

10,16 10,17
12,14

12,16 12,17

(a) Trade-off between throughput and com-
putational cost.

0

Aux Head 1: Average% PrunedTokens

A
u
x

H
e
ad

0
:
A
ve

ra
ge

%
P
ru

n
e
d

To
ke

n
s

10 20 30 35

12

5 15 25 40 50

14

16

18

20

22

24

26

28

30

45

7,7

9,9

c
v

18,18

13,13

16,16

12,14

15,22

7,14

2,15 2,16
2,17

4,18
6,18

5,14

6,14

6,166,15

12,18
12,17

12,16
10,16

8,16
8,18

10,17
10,18

6,17

(b) Average percentage of pruned tokens per
configuration.

Fig. 6: Exploration of the pruning head configuration on the COCOStuff10k dataset.
Figure from [19].

4.4 Results and Discussion

To enable a fair evaluation, we compare our token reduction mechanism against
SegViT in its original form. We also construct its pruned variants by applying state-
of-the-art token reduction techniques. Specifically, the CTS method is used for patch
merging, followed by soft token pruning using DToP. A combined configuration incor-
porating both techniques is also evaluated, as it represents a preliminary version of
our STEP mechanism. Throughout this process, we adhered to the baseline configura-
tions and parameters established by the authors. We combine a fixed number of 2× 2
patches for CTS, specifically merging 103 patches, and position the auxiliary heads
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at the 8th and 16th layers for DToP. In our STEP method, we apply the previously
described threshold configuration for dCTS. We choose to divide the ViT-Large model
into two and three stages, naming them STEP@[18] and STEP@[8,16], respectively.
The values in brackets indicate the pruning heads positions. For experiments on ViT-
Base, we adopt the configuration proposed by the original DToP, placing auxiliary
pruning heads after the 6th and 8th encoder layers. In addition, we evaluate our own
strategy by applying a single pruning head after the 8th layer, as a lighter alternative
aiming for better inference efficiency.

Table 3 reports the performance of STEP integrated into ViT-L with standard
low-resolution inputs. The results indicate that STEP achieves segmentation accuracy
comparable to the baseline, with mIoU degradation remaining below 2.5% across con-
figurations. Moreover, it consistently yields a substantial reduction in computational
complexity across different datasets. Introducing two auxiliary heads further amplifies
this gain, achieving up to a 2.8× reduction in GFLOPs. However, this comes at the
cost of significantly lower throughput. To ensure the robustness of our conclusions,
we also replicate the experiments using ViT-Base as the backbone. The corresponding
results are reported in Table 4. Our STEP method achieves up to a 2.5× reduction
in computational cost compared to the SegViT baseline, while incurring an accuracy
drop comparable to that observed with ViT-Large. We further assess the effect of
patch fusion on performance using our dCTSτ -6899 variant. Notably, it achieves the
best trade-off by reaching 48.2 mIoU on ADE20k, which is identical to the baseline,
while requiring only 73 GFLOPs and delivering a high inference speed of 98 FPS,
nearly twice as fast.

Table 3: Performance evaluation of our STEP mechanism integrated into ViT-Large.

ADE20k (512× 512) COCOStuff10k (512× 512)

Method mIoU↗ GFLOPs↘ FPS↗ mIoU↗ GFLOPs↘ FPS↗

SegViT 53.0 624 38 46.7 373 44.5
+CTS1 52.0 410 41 46.2 251 40
+DToP1 52.3 465 6 46.6 290 15

+CTS1 & DToP1 51.2 334 12.5 45.4 210 17
+STEP@[8,16]τ -6899 51.2 224 14 46.0 173 18
+STEP@[8,16]τ -4999 50.8 334 15 45.3 150 20
+STEP@[18]τ -6899 51.7 395 22 46.0 201 30
+STEP@[18]τ -4999 50.4 261 26.5 45.1 177 29

1Default configuration from the original paper

The results in Table 5 and Table 6 highlight how our STEP mechanism and the
dCTS patch merger effectively handle varying image resolutions. As the resolution
increases to 768 × 768 and 1024 × 1024, SegViT suffers a dramatic increase in com-
putational cost and a substantial drop in inference speed. Our STEP configurations
maintain a more stable trade-off. When using ViT-Base as the backbone, we observe
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Table 4: Performance evaluation of our STEP mechanism integrated with ViT-Base.

ADE20k (512× 512) Cityscapes (512× 512)

Method mIoU↗ GFLOPs↘ FPS↗ mIoU↗ GFLOPs↘ FPS↗

SegViT 48.3 113 53 67.7 110 70
+CTS1 47.8 75 40 67.6 73 56
+DToP1 45.8 91 25 68.2 82 24

+CTS1 & DToP1 46.3 62 25 67.5 59.5 27
+dCTS τ -6899 48.2 73 98 67.5 77 66
+STEP@[6,8]τ -6899 46.9 64 24 67.2 61 22
+STEP@[6,8]τ -4999 45.3 50 34 64.3 44 26
+STEP@[8]τ -6899 47.1 68 32 67.4 66 32
+STEP@[8]τ -4999 45.8 53 43 64.2 44 32

1Default configuration from the original paper

Table 5: Performance evaluation of our STEP mechanism integrated with ViT-Base.

Cityscapes (768× 768) Cityscapes (1024× 1024)

Method mIoU↗ GFLOPs↘ FPS↗ mIoU↗ GFLOPs↘ FPS↗

SegViT 73.7 301 65 75.2 670 24
+CTS1 72.9 190 45 74.9 403 46
+DToP1 73.5 198 22 75.0 430 16

+CTS1 & DToP1 72.7 135 22 75.0 296 21
+dCTS τ -6899 72.8 182 68 72.7 247 62
+STEP@[6,8]τ -6899 72.6 131 21 72.0 183 25
+STEP@[6,8]τ -4999 69.8 95 22 71.0 149 25
+STEP@[8]τ -6899 69.9 149 28 72.0 199 35
+STEP@[8]τ -4999 69.9 105 22 71.1 163 36

1Default configuration from the original paper

that the reduction in FLOPs is most significant compared to the two reference meth-
ods, CTS and DToP. However, this does not consistently translate into proportional
gains in throughput. In this case, a noticeable drop (up to 4%) in segmentation qual-
ity is observed. This suggests that the confidence threshold used in our early-pruning
mechanism may need to be re-evaluated to better balance efficiency and accuracy.
The dCTS, particularly itsτ -6899 variant, emerges as a strong compromise between
accuracy and efficiency. It consistently delivers high mIoU across both backbones and
resolutions, with much lower GFLOPs and significantly improved throughput. For
example, on ViT-Large at 1024× 1024, dCTS achieves only a marginal drop in mIoU
while requiring just 802 GFLOPs, which is 2.6 times less complex than SegViT, and
reaches 41 FPS, surpassing SegViT’s 12 FPS by more than a factor of three. This
demonstrates the capacity of dCTS to maintain segmentation quality while signifi-
cantly enhancing inference efficiency in high-resolution and real-time applications. By
applying the complete STEP framework, computational complexity can be reduced
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by as much as 4×. Overall, the higher the input image resolution and the larger the
backbone, the more our STEP approach exhibits clear advantages in terms of both
efficiency and segmentation performance

Table 6: Performance evaluation of our STEP mechanism integrated with ViT-Large.

Cityscapes (768× 768) Cityscapes (1024× 1024)

Method mIoU↗ GFLOPs↘ FPS↗ mIoU↗ GFLOPs↘ FPS↗

SegViT 74.4 970 37 75.7 2086 12
CTS1 74.5 622 40.5 75.7 1283 20.5
DToP1 73.7 589 13 75.4 1176 7.5

+dCTSτ -6899 74.4 598 47 74.9 802 41
+STEP@[8,16]τ -6899 73.6 424 13 73.8 514 13.5
+STEP@[18]τ -6899 74.3 490 23.5 74.5 655 20.5

1Default configuration from the original paper

We observe that strategically placing the pruning heads allows for greater reduc-
tion in GFLOPs. This is likely due to the fact that, regardless of the configuration,
an average 48% of tokens can be halted early in the network for ViT-Large under
high-resolution images. Adding STEP to ViT-B when processing standard-resolution
images results in an average pruning of 39% of tokens (Table 7). This is a consistent
trend, which we also observed in the ablation study (4.3) conducted on COCOStuff10k
at the same resolution. Figure 8 and Figure 7 illustrates how tokens are halted across
images by each auxiliary head, revealing that many tokens are pruned early in sim-
ple scenarios, while they are retained until the final prediction phase in more complex
scenes.

Table 7: Token pruning dynamics per auxiliary head in STEP on
Cityscapes for various input resolutions.

Input 512× 512 ViT Base Input 1024× 1024 ViT Large

STEP@[6,8] STEP@[8] STEP@[8,16] STEP@[18]

After Aux1 Aux2 Aux1 Aux1 Aux2 Aux1

Mean 245 269 273 717 885 833
Maximum 400 422 446 1143 1340 1238
Minimum 107 127 101 300 362 247

To better understand why total throughput does not scale linearly with FLOPs
savings, we present Figure 9 and Figure 10, which show the per-layer inference time
and computational cost with STEP applied to both ViT-Base and ViT-Large under
high-resolution. Although fewer tokens are processed in the later layers, identifying
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and discarding high-confidence tokens introduces bottlenecks. Despite the low compu-
tational cost of the auxiliary pruning head based on the ATM module, the masking
operations likely cause the observed slowdown due to their irregular control flow,
dynamic memory access patterns, and tensor shape variability. Further analyse of com-
putation flow is necessary to verify if all operations are realized on GPU and there
is unnecessary memory copy between GPU and CPU which can effectively slow the
whole process. Additional overheads, such as memory allocation and synchronization
costs, may further diminish the expected performance gains. These findings suggest
that optimizing only the number of tokens is insufficient, one must also consider the
computational efficiency of the pruning mechanism itself.

Fig. 7: Distribution of pruned supertokens across the different stages using STEP@[8]
on ViT-Base. From top to bottom: input image from the Cityscapes dataset at 1024×
1024 resolution, generated superpaches via dCTS, pruned tokens marked in black, and
final segmentation results.
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Fig. 8: Distribution of pruned supertokens across the different stages using
STEP@[8,16] on ViT-Large. From top to bottom: input image from the Cityscapes
dataset at 1024 × 1024 resolution, generated superpaches via dCTS, pruned tokens
marked in black for auxiliary heads 1 and 2, and final segmentation results.

5 Conclusion

We introduced a novel token reduction method, SuperToken and Early-Pruning
(STEP), designed to improve token efficiency in ViTs for semantic segmentation.
STEP combines adaptive patch merging with an early-pruning mechanism. At the core
of this method lies an enhanced patch-level merging technique, referred to as dCTS,
which employs a flexible strategy to form square-shaped superpatches of varying sizes,
allowing the model to better capture the spatial complexity of image content. Addi-
tionally, we investigated the benefits of early-pruning tokens via DToP within the
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(a) STEP@[6,8]

(b) STEP@[8]

Fig. 9: Per-layer computational complexity (GFLOPs) and throughput (FPS) anal-
ysis across encoder and auxiliary pruning heads using ViT-Base as backbone on the
Cityscapes dataset at 1024×1024 resolution.

network. Our experiments were conducted under varying image resolution settings,
encompassing both low and high-resolution inputs. To the best of our knowledge, this
is the first work to systematically assess the effect of token pruning across different res-
olution levels. STEP demonstrated strong scalability on both ViT-Base and ViT-Large
with high-resolution images, offering substantial computational savings while preserv-
ing most of the segmentation accuracy, making it a compelling choice for efficient dense
prediction in high-resolution scenarios. However, this efficiency gain does not always
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(a) STEP@[8,16]

(b) STEP@[18]

Fig. 10: Per-layer computational complexity (GFLOPs) and throughput (FPS) anal-
ysis across encoder and auxiliary pruning heads using ViT-Large as backbone on the
Cityscapes dataset at 1024×1024 resolution.

resulted in a proportional throughput improvement. The dCTS alone showed partic-
ularly strong robustness to increasing input resolutions. Across all configurations, a
small but consistent drop in mIoU was observed compared to the baseline, suggesting
that some relevant tokens may have been prematurely discarded or merged. This high-
lights the importance of carefully tuning the fusion thresholds within STEP especially
when operating under high-resolution regimes. The early pruning mechanism using
ATM-based auxiliary heads allows up to 48% of tokens to be halted. While this further
reduces computational complexity, it significantly slows down inference, regardless of
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image resolution. This is likely due to hardware inefficiencies introduced by the mask-
ing mechanism. Further work could focus on analyzing current solution and improving
algorithm design to better leverage GPU parallelism and avoid GPU-to-CPU data
transfers.
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