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Abstract

Transformer models rely on Multi-Head Self-Attention
(MHSA) mechanisms, where each attention head con-
tributes to the final representation. However, their com-
putational complexity and high memory demands due to
MHSA hinders their deployment at the edge. In this work,
we analyze and exploit information redundancy in atten-
tion maps to accelerate model inference. By quantify-
ing the information captured by each attention head using
Shannon entropy, our analysis reveals that attention heads
with lower entropy, i.e., exhibiting more deterministic be-
havior, tend to contribute less information, motivating tar-
geted compression strategies. Relying on these insights,
we propose Entropy Attention Maps (EAM), a model that
freezes the weights of low-entropy attention maps and quan-
tizes these values to low precision to avoid redundant re-
computation. Empirical validation on ImageNet-1k shows
that EAM achieves similar or higher accuracy at ≤20%
sparsity in attention maps and competitive performance be-
yond this level for the DeiT and Swin Transformer models.

1. Introduction
Transformer models have achieved notable success in nat-
ural language processing (NLP) [34] and computer vision
tasks [3, 6, 21, 30, 40], due to their ability to model long-
range dependencies and handle variable-sized input se-
quences. Architectures such as BERT [5] and Vision Trans-
formers (ViT) [6] have demonstrated state-of-the-art perfor-
mance on a wide range of benchmarks. Their effectiveness
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Figure 1. Visualization of the input image and the corresponding
attention maps from the last layer’s attention heads of DeiT-Tiny.

is due to the Multi-Head Self-Attention (MHSA) mecha-
nism, which allows the model to capture diverse contextual
relationships through multiple attention heads operating in
parallel.

However, Transformers impose significant computa-
tional and memory demands, essentially due to MHSA
[32]. Computing attention requires pairwise interaction of
all token embeddings, resulting in a quadratic complexity
O(N2) with respect to the sequence length, where N is
the number of tokens. This hinders deployment in environ-
ments with limited resources or tight latency requirements.

To mitigate these limitations, recent research has at-
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tempted to reduce complexity by designing more efficient
models. Amongst the developed techniques, two main cate-
gories of complexity reduction stand out. The first involves
token-level sparsity [10], in which attention is selectively
applied only to a subset of tokens. The second is quantiza-
tion [15, 16, 18, 23, 37, 38], where model weights and ac-
tivations are encoded with lower numerical precision (e.g.,
from FP32 to 4-bit integer), reducing both memory footprint
and computational complexity.

In this work, we focus on precision reduction of atten-
tion heads within the MHSA module, relying on two main
observations. First, our visual analysis of individual atten-
tion maps, shown in Figure 1 reveals that their weights fre-
quently focus on small, localized regions of the input space
rather than uniformly distributed across all positions. This
spatial concentration suggests that a significant part of the
attention computations may be redundant, as many atten-
tion weights contribute minimally to the context of the im-
age. Second, we hypothesize that this redundancy can be
quantified via Shannon entropy, i.e., heads exhibiting lower
entropy, indicating limited variation across inputs, may be
frozen and quantized to extremely low bit widths (as low
as 4 bits) without affecting model performance, since their
weights remain stable during inference. To test this hypoth-
esis, we estimate for each head in every layer the entropy
over the training dataset of the weights of the attention map.
The resulting entropy values, as shown in Figure 2, allow us
to identify heads with consistently low variability.

Relying on this observation, we develop a compression
strategy that partially fixes (freezes) the attention weights of
low-entropy attention maps and applies low-precision quan-
tization. Despite removing their dynamic computation dur-
ing inference, we retain the representational diversity of the
high-entropy attention heads. Our contributions are sum-
marized as follows:

• We apply an entropy-based measure to quantify the infor-
mation of each attention head, revealing that all attention
heads exhibit a variable entropy across inputs.

• We propose a model that partially fixes the attention
weights of low-entropy attention maps during inference
and applies 4-bit quantization, reducing the computa-
tional complexity and memory demands without altering
the model performance.

• We conduct extensive experiments on ImageNet-1K
across various ViT architectures against state-of-the-art,
and validate these results with an ablation study.

2. Related Works

2.1. Vision Transformers
As discussed in the Introduction, ViTs introduced by Doso-
vitskiy et al. [6] rely on the self-attention mechanism
that computes contextual relationships between all tokens,

where each token’s representation is generated through
learned query, key, and value projections followed by
softmax-weighted aggregation across the entire token se-
quence. Building upon ViT, subsequent work addressed ef-
ficiency and scalability limitations. DeiT [33] introduced
distillation strategies to reduce training resource require-
ments, while Swin Transformer [22] proposed hierarchi-
cal feature maps and local-window attention to lower com-
putational complexity. Despite these optimizations, the
quadratic complexity of self-attention relative to the num-
ber of tokens in the sequence, coupled with high parame-
ter counts, sustained significant computational and memory
demands.

To mitigate these constraints, researchers have designed
efficient architectures that target low computation and mem-
ory during inference. Among these, Swin Transformer [22]
introduced a hierarchical design using shifted window par-
titioning to efficiently limit attention computation to local
regions. Pyramid Vision Transformer (PVT) [36] adopted
a progressive shrinking pyramid structure to handle high-
resolution inputs with reduced computation.

Besides, specific model compression strategies have
been developed for integration into existing architectures.
These are broadly categorized into two families: token re-
duction, which exploits sparsity, and quantization, which
reduces numerical precision. Token reduction methods de-
crease the sequence length processed by the ViT, either by
pruning redundant tokens [19, 28, 31] or merging semanti-
cally similar tokens [2, 8, 9, 13]. These approaches reduce
computational complexity, but leave model parameters un-
compressed, resulting in comparable memory demands for
weights. In this paper, we focus on quantization techniques
that reduce the precision of both weights and activations.
These will be detailed in the following section.

2.2. Quantization

Quantization reduces the numerical precision of weights
and activations in neural networks, typically from 32-bit
floating-point to lower bit-width fixed-point or integer rep-
resentations [7]. Early quantization methods were devel-
oped for CNNs [11, 12], these methods include DoReFa-
Net [41] which approximates gradients in quantization-
aware training by straight-through estimator (STE) [1], and
PACT [4] which propose parameterized clipping for ac-
tivation quantization. Other works adopted non-uniform
quantization [14, 24, 39], and mixed-precision quantization
[26, 29, 35, 37], where different bit widths are assigned to
weights and activations based on their sensitivity, typically
determined through pre-computed measures prior to infer-
ence.

Recent research has extended quantization methods to
Vision Transformers. Ranking Loss [23] preserves the rel-
ative order of quantized attention maps through a dedicated
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Figure 2. Entropy Attention Maps (EAM) of the CLS token of a DeiT-Tiny computed on 5% of ImageNet-1K. With this approach we can
visualize differences between heads and the way they actually use information through attention.

loss function. Q-ViT [17] implements differentiable quan-
tization, treating bit widths and scaling factors as learnable
parameters during optimization. PTQ4ViT [38] introduces
twin uniform quantization coupled with a Hessian-guided
metric for scaling factor selection. To handle non-linear op-
erations, FQ-ViT [20] employs powers-of-two scaling for
LayerNorm and logarithmic integer quantization for Soft-
max outputs. RepQ-ViT [18] decouples quantization from
inference pipelines to manage extreme activation distribu-
tions in LayerNorm and Softmax layers. Finally, PSAQ-
ViT [16] enables data-free quantization by leveraging patch
similarity metrics.

3. Motivations
Consider a tokenized input sequence X ∈ RN×de , with
N tokens each of dimension de, obtained by partitioning
an RGB image I ∈ RH×W into non-overlapping patches
Ip ∈ RHp×Wp . The Transformer architecture processes
this through two modules, a Multi-Head Self-Attention
(MHSA) and a Multi-Layer Perceptron (MLP). The MHSA
mechanism first projects the input sequence X into three
distinct representations query (Q), key (K) and values (V)
through linear projections:

Q = XWQ, K = XWK , V = XWV (1)

where Q,K, V ∈ RN×de , and WQ, WK , WV ∈ Rde×de

are learned projection matrices for queries, keys, and val-
ues, respectively. Attention is then computed using the
scaled dot-product formulation:

A = Softmax
(
QK⊤
√
de

)
∈ RN×N (2)

This attention map is used to aggregate the value vectors:

O = AV ∈ RN×de (3)

A final linear projection is applied to the output:

Ô = OW proj, W proj ∈ Rde×de (4)

Each token is then independently passed through an
MLP with two fully connected layers:

MLP(X) = σ(XW1)W2 (5)

where W1 ∈ Rde×4de and W2 ∈ R4de×de are learned
weight matrices and MLP(X) ∈ RN×de is the output of the
Transformer layer.

As for the computation complexity expressed in FLOPs,
each module’s complexity breaks down as follows:

ΦMHSA(N, de) = 4Nd2e + 2N2de (6)

ΦMLP(N, de) = 8Nd2e (7)

Finally, the total computational cost of a Transformer
layer can be decomposed as follows:

ΦLayer(N, de) = ΦMHSA(N, de) + ΦMLP(N, de) (8)

= 12Nd2e + 2N2de (9)

The expression in Eq (9) reveals that Transformers dis-
play quadratic complexity with respect to the sequence
length N , as shown with the term 2N2de. Besides, the
MHSA mechanism requires the storage of the attention ma-
trix A ∈ RN×N , and the projection matrices (WQ, WK ,
WV , W proj) contribute by O(d2e) parameters. Addition-
ally, the MLP’s weight matrices (W1, W2) introduce O(d2e)
parameters per layer. To alleviate this memory overhead,
quantization emerges as a suitable optimization strategy.

As discussed in Section 1, attention weights are mainly
concentrated to specific regions rather than uniformly dis-
tributed. This concentration creates redundancy, as many
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Figure 3. Full entropy maps of a DeiT-Tiny computed on 5% of ImageNet-1K.

weights contribute minimally to the context of the input.
Our approach is motivated by two hypotheses: (1) The re-
dundancy in attention computations can be quantified by
analyzing the entropy of attention weights across multiple
input samples. (2) Attention weights that exhibit low en-
tropy, demonstrating stable and predictable patterns across
different inputs, can be frozen and quantized to low preci-
sion.

Specifically, for each attention head, we measure the en-
tropy of its weight distributions over a dataset, which serves
as an indicator of the weight stability. The details of this
approach are formalized in the following section.

4. Methodology
4.1. Entropy: Information and uncertainty
Entropy, a fundamental concept in information theory, pro-
vides a robust metric to identify sensitive and useful param-
eters within a model. It has been widely used in various
applications, including model quantization and regulariza-
tion [25, 27], to optimize performance and reduce complex-
ity. Entropy is defined as the amount of information con-
tained in a probability distribution, representing the min-
imum number of bits required to encode the distribution
without loss of information. Mathematically, the entropy
H(X) of a random variable X with probability distribution
p(x) is given by:

H(X) = −
∑
x∈X

p(x) log2 p(x), withX ∼ p(x) (10)

Entropy can also be interpreted as a measure of uncer-
tainty. In this context, information is inversely related to the
predictability of an event. An event that is highly uncertain
or surprising carries more information as it challenges our
existing knowledge and expectations. This property makes
entropy a valuable tool for assessing the informational con-
tent and sensitivity of the model parameters.

By combining attention scores with entropy, we can gain
deeper insight into model dynamics and better discern im-
portant information from redundant information. In this

way, we can better spot useful computation instead of useful
parameters. As depicted above, the attention mechanism is
a computationally expensive component and quadratically
increases with the number of tokens N , the purpose of this
paper is to find which computation in the attention mecha-
nism is redundant and can be avoided using entropy.

4.2. Entropy Attention Maps
4.2.1. Definition
To better quantify the behavior of attention maps and
their uncertainty, we compute the entropy of each of their
weights. We take every weight as a random variable with
some distribution p taking the values in [0, 1].

We define the attention map of the layer l and the head h
of an image m by:

Am
l,h = softmax

Km
l,hQ

l,m
h

T

√
dl

 (11)

Am
l,h ∈ R(N+1)×(N+1), since we add the Self-Attention

of the CLS token. We estimate the distribution p of each
attention weight i of this random variable with a histogram
quantized in b = 8 bits. This way, we decompose the distri-
bution into 256 values between 0 and 1 due to the softmax
function.

pil,h(k) =
1

M

M∑
m

(
Am

l,h[i] ∈
[
k

2b
,
k + 1

2b

[)
, (12)

k ∈ {0, 1, ..., 2b − 1}

M being the number of images in our dataset that we use
to estimate the distribution, here we use 5% of ImageNet-
1K. Thus, we can compute the entropy of every attention
weight and quantize their uncertainty as follows:

Hl,h[i] = −
2b−1∑
k=0

pil,h(k) log2(p
i
l,h(k)) (13)
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Figure 4. Visualization of KL divergence of attention weights distributions between the non-quantized model pfp32(x) and the 4-bit
quantized model pq(x) on DeiT-Tiny, computed on 5% of ImageNet-1K. (a) Evolution of divergence of the CLS token over heads of the
model. (b-c) Divergence maps on the CLS token of a DeiT-Tiny for Layer 1 Head 1, and Layer 2 Head 3 respectively.

where H ∈ RL×H×(N+1)×(N+1). Through this process,
we derive a matrix that encapsulates the uncertainty and re-
dundancy for each weight in the attention maps.

4.2.2. Visualization

First, we visualize the entropy maps of the class token
(CLS), specifically focusing on the first row of the entropy
map, for the first six attention heads of the DeiT-Tiny model,
as shown in Figure 2.

These visualizations reveal distinct behavioral differ-
ences between attention heads, indicating that some heads
are more redundant than others. For instance, layer 2 head
1 (L2H1) exhibits entropy values near zero for most of its
elements, thereby confirming our initial hypothesis. Im-
portantly, this low entropy does not imply that the head
is less important or can be discarded, rather, it suggests
that its values are highly certain and stable. In fact, some
heads, such as L2H1, demonstrate low entropy, indicating
that their weights remain stable.

Examining a full entropic attention map in Figure 3 pro-
vides a clearer view of the uncertainty within an attention
head. Once again, we observe distinct behaviors between
two different heads. In particular, the matrix for L2H3
appears almost entirely empty of information, indicating
high redundancy and predictability in many of its attention
weights.

4.3. Impact of Quantization

EAM can also help us understand the impact of quantization
on our model. If we see quantization as adding noise to the
weights and activations, its impact should be detected in our
entropy attention maps.

To better quantify the amount of noise introduced, we
can use the KL divergence to measure the distance between
two distributions:

DKL(pfp32||pq) =
∑
x∈X

pfp32(x) log
pfp32(x)

pq(x)
(14)

This formula allows us to compare the distribution of at-
tention weights from the non-quantized model pfp32(x) with
its quantized counterpart pq(x).

Figure 4 illustrates two examples of divergence maps
on the CLS token for a DeiT-Tiny model with 4-bit quan-
tized weights and activations, along with the evolution of
the mean and maximum divergence within the model. We
observe distinct behaviors among different heads; for in-
stance, the fifth head (L2H3) exhibits higher divergence
values compared to the first head. Additionally, quantiza-
tion appears to have a more significant impact on the initial
layers, gradually diminishing towards the end. This sug-
gests that quantization affects each head uniquely, leading
us to believe that EAM should be computed on the quan-
tized version to more accurately represent the dynamics of
the uncertainty introduced by quantization.

4.4. Attention weights fixing
As noted in previous sections, many attention weights are
redundant and remain unchanged across different inputs.
We can therefore fix these weights and replace them with
their mean value. This approach allows us to reduce the
computational cost of the model by bypassing a portion of
the attention mechanism. A mask is applied to the attention
map, where the values are defined as the τ% lowest of the
entropic attention map:

Afix
l,h = Al,h ⊗ (Hl,h > ϵτ ) +Aµ

l,h ⊗ (Hl,h < ϵτ ), (15)

Aµ
l,h =

1

M

M∑
m

Am
l,h
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Figure 5. Top-1 accuracy of EAM compared to the RepQ-ViT baseline for different sparsity levels across various ViT models.

In the following sections, we will refer to τ as the
sparsity level, although in the literature this typically de-
notes matrices with τ% zeros. In our context, the matrix
Al,h ⊗ (Hl,h > ϵτ ) becomes sparse, containing zeros that
will be replaced by the mean Aµ

l,h.

5. Experiments

5.1. Set up
We conduct experiments on common ViT-based models,
including ViT-Small, ViT-Base, DeiT-Tiny, DeiT-Small,
DeiT-Base, Swin-Tiny, and Swin-Small using the timm
package. For post-training quantization, we employ RepQ-
ViT [18], which demonstrates excellent performance on im-
age classification. We adhere to the original paper’s config-
uration for quantization parameters and use ImageNet-1K
to calibrate the entropy of attention maps.

Besides, we investigate the impact of attention sparsity
on the accuracy of EAM across these ViT models, and we
compare two variants of our model to the RepQ-ViT base-
line. EAMFP32, where model weights and activations are
quantized to 4 bits while frozen attention map weights re-
tain 32-bit precision, and EAM4bits, where model weights,
activations and frozen attention map weights are quantized
to 4 bits. Finally, we conduct an ablation study comparing
EAM with random fixing, where we use random selection
and fixing of attention map weights instead of EAM.

5.2. Results
5.2.1. Impact of sparsity
Figure 5 illustrates the Top-1(%) accuracy of EAM on
ImageNet-1K across varying sparsity levels for models
quantized to 4-bit weights and activations. Two variants of

EAM are compared: (1) EAMFP32, derived from the full-
precision (unquantized) model, and (2) EAM4bits, com-
puted using the quantized model via RepQ-ViT.

First, we observe that a sparsity level of up to 30% can
be achieved across all models without significant accuracy
degradation. By selectively targeting low-entropy attention
weights, these can be frozen without compromising model
performance. Second, the EAM4bits computation reduces
the performance gap relative to the baseline, particularly at
higher sparsity ratios (e.g., > 50%) compared to EAMFP32,
this is true for all DeiT models.

Furthermore, at lower sparsity levels (10–20%),
EAM4bits occasionally enhances accuracy compared to the
RepQ-ViT baseline. For example, DeiT-Base achieves a
Top-1 accuracy of 75.31% in the baseline configuration but
improves to 75.71% at 10% sparsity and 75.64% at 20%
sparsity. At intermediate sparsity levels (30-40%), the Top-
1 accuracy drop is not significant compared to the gains in
complexity.

Finally, we observe that Swin-based models behave
somewhat differently and appear to be more robust to fixed
attention weights. Specifically, they can tolerate up to 50%
sparsity with less than a 2% drop in accuracy, compared to
a 10% drop for DeiT-Small.

Table 1 shows the performance of EAM with 4-bit pre-
cision at τ = 10% and τ = 20% sparsity levels. In general,
EAM leads to an increase in performance at these sparsity
levels across all models except ViT-Base and Swin-Tiny,
where the accuracy drop is minimal, at less than 0.3% and
0.12%, respectively. Although the improvement is modest,
it is worth noting that fixing and quantizing the attention
weights to 4 bits can contribute to enhanced performance.
The following section will compare our entropy-based fix-
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Method Prec. (W/A) ViT-S ViT-B DeiT-T DeiT-S DeiT-B Swin-T Swin-S

Full-Precision 32/32 81.39 84.54 72.21 79.85 81.80 81.30 83.23
RepQ-ViT 4/4 64.92 68.46 57.91 68.58 75.31 70.67 79.45
EAMτ=10%

4bits 4/4 65.09 68.18 58.03 68.74 75.71 70.65 79.79
EAMτ=20%

4bits 4/4 65.19 68.16 58.02 68.53 75.64 70.55 79.63

Table 1. Top-1 accuracy of EAM under 4-bit precision on various ViT models for 10% and 20% sparsity levels, compared to RepQ-ViT
and Full-Precision baselines.
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Figure 6. Ablation study of EAM against random fixing across
sparsity levels. (a) DeiT-Tiny, (b) DeiT-Small, (c) DeiT-Base, (d)
Swin-S.

ing of attention weights in EAM with random fixing.

5.2.2. Random fixing
To validate the effectiveness of our entropy-based fixing
approach in EAM, we compare it against random fixing,
i.e., randomly selected attention weights. Figure 6 illus-
trates the Top-1 accuracy versus the sparsity level of EAM
against random fixing across DeiT-Tiny, DeiT-Small, DeiT-
Base, and Swin-S, where our method consistently outper-
forms random fixing on all these models.

The main insights of this ablation study are two-fold.
First, the discrepancy between the accuracy of EAM and
random fixing is significant enough to validate our ap-
proach, especially on DeiT models, where Top-1 accuracy
of random fixing collapses, keeping the gap to our model as
low as 11.67% and as high as 55.60% on DeiT-Tiny. Al-
though the gap is less pronounced on Swin-S, it remains
statistically significant across sparsity levels, as the gap in
Top-1 accuracy increases from 0.91% at 10% sparsity to
6.60% at 90% sparsity.

Second, DeiT is more sensitive to random fixing than
Swin. This difference likely arises from the localized at-
tention windows and hierarchical structure in Swin: While
DeiT relies on global attention across all patches, Swin
restricts interactions to local regions and refines features
through downsampling. As a result, randomly fixing parts
of attention maps in DeiT shows a higher impact on the sub-
sequent layers compared to Swin, as the damage is confined
to a single window, and later layers can recover lost infor-
mation through merged features.

6. Conclusion

In this work, we introduced EAM, an entropy-driven ap-
proach to optimize Vision Transformers by analyzing and
exploiting the information redundancy in attention heads.
Our main insight is that low-entropy attention heads ex-
hibit stable, predictable patterns across inputs, allowing us
to fix and quantize them aggressively without compromis-
ing model performance. Through extensive experiments on
ImageNet-1K with various ViT architectures, we demon-
strated that our method reduces computational complexity
and memory demands while maintaining accuracy. Specifi-
cally, EAM increases the Top-1 accuracy of the RepQ-ViT
baseline while fixing 10% to 20% of the weights in atten-
tion maps and quantizing them to 4 bits. Furthermore, we
achieved up to 40% sparsity in attention maps with negli-
gible performance degradation. Finally, we validated the
entropy-based fixing in EAM with an ablation study with
random fixing, and showed that EAM outperforms random
fixing on all the ViT models. In future work, we will ex-
tend our method to larger architectures, including Vision-
Language Models (VLMs) and Large Language Models
(LLMs), which process longer context sequences compared
to ViTs. Given the high computational cost of MHSA,
applying our method to these models is expected to yield
greater computational savings, therefore, we find it interest-
ing to validate these gains experimentally. In addition, we
can further extend our work by enabling the model to retrain
with attention weights fixed with EAM, aiming to minimize
the loss in accuracy.
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